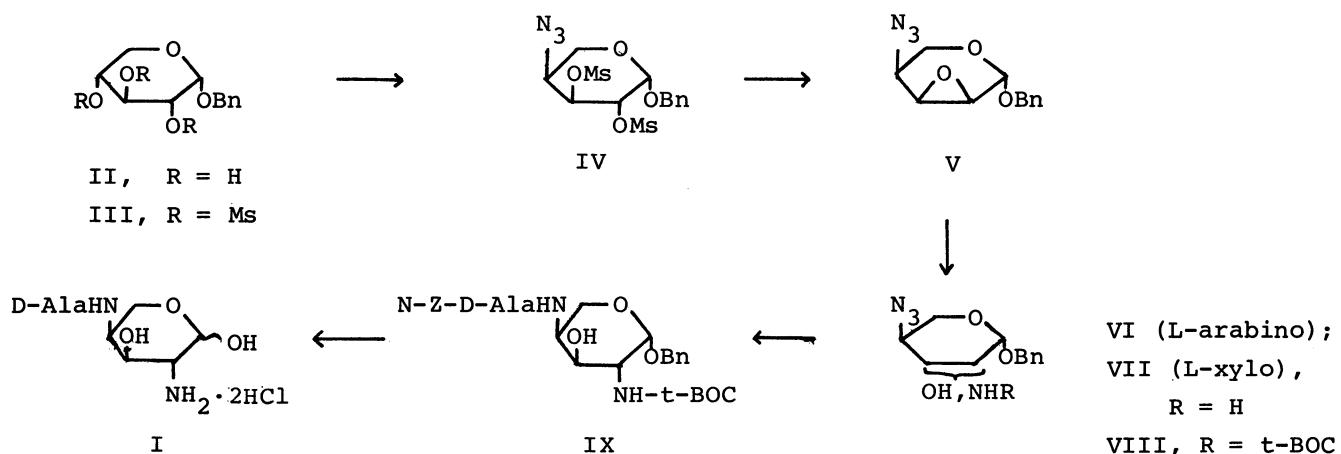


A NEW SYNTHESIS OF PRUMYCIN

Juji YOSHIMURA, Hironobu HASHIMOTO, and Tetsuo NISHIDE


Laboratory of Chemistry of Natural Products, Faculty of Science,  
Tokyo Institute of Technology, Meguro-ku, Tokyo 152

Prumycin (4-D-alanylaminio-2-amino-2,4-dideoxy-L-arabinose)  
was synthesized from D-xylose through nine-step conversions.

Prumycin, a new antifungal antibiotic isolated by Hata et al.,<sup>1)</sup> was elucidated to be 4-D-alanylaminio-2-amino-2,4-dideoxy-L-arabinose by Omura et al.<sup>2)</sup> Recently, Kuzuhara and Emoto<sup>3)</sup> confirmed this structure by chemical synthesis from methyl 2-azido-2-deoxy- $\alpha$ -D-allopyranoside via eleven-step conversions. We wish to describe a facile synthesis of prumycin dihydrochloride (I) from D-xylose.

Benzyl  $\alpha$ -D-xylopyranoside (II) was mesylated by a usual method to give 2,3,4-tri-O-mesyl derivative (III) [mp 133-134°C;  $[\alpha]_D^{23} +99.6^\circ$  (c 1.0,  $\text{CHCl}_3$ ); NMR  $\delta$  ( $\text{CDCl}_3$ ): 4.66 ( $\text{H}_4$ , sextet,  $J_{3,4}=J_{4,5}=10$ ,  $J_{4,5}=6$  Hz)] in 85 % yield. By the selective substitution of III with sodium azide as reported for the corresponding methyl glycoside,<sup>4)</sup> benzyl 4-azido-4-deoxy-2,3-di-O-mesyl- $\beta$ -L-arabinopyranoside (IV) [sirup;  $[\alpha]_D^{23} +146^\circ$  (c 1.0,  $\text{CHCl}_3$ ); IR  $\text{cm}^{-1}$ : 2130 ( $\text{N}_3$ ), 1370, 1185 ( $\text{SO}_2$ ); NMR  $\delta$  ( $\text{CDCl}_3$ ): 4.29 ( $\text{H}_4$ ; m,  $J_{3,4}=J_{4,5}=3.5$ ,  $J_{4,5}=2.5$  Hz)] was obtained in 95 % yield. Compound IV in methanol-water was refluxed with potassium hydroxide to give benzyl 2,3-anhydro-4-azido-4-deoxy- $\beta$ -L-ribopyranoside (V) [mp 47-48°C;  $[\alpha]_D^{23} +17.0^\circ$  (c 1.0,  $\text{CHCl}_3$ ); IR  $\text{cm}^{-1}$ : 2100 ( $\text{N}_3$ ); NMR  $\delta$  ( $\text{CDCl}_3$ ): 3.14 ( $\text{H}_2$ ; d,  $J_{1,2}=0$ ,  $J_{2,3}=3.8$  Hz), 3.89 ( $\text{H}_5$ ; q,  $J_{4,5}=3.8$  Hz)] in 40 % yield, together with the corresponding  $\beta$ -L-lyxopyranoside as a minor product. The structure of V was further ascertained by the NMR spectrum of benzyl 2,3-anhydro-4-acetamido-4-deoxy- $\beta$ -L-ribopyranoside ( $J_{3,4}=5.3$ ,  $J_{4,5}=0$  Hz), which was derived from V by the selective hydrogenation with platinum oxide and then N-acetylation.

Treatment of V with methanolic ammonia at 80-90°C gave a crystalline mixture of two epoxide-ring opening products, i.e. benzyl 2-amino-4-azido-2,4-dideoxy- $\beta$ -L-arabinose (VI) and 3-amino-4-azido-2,4-dideoxy- $\beta$ -L-xylopyranoside (VIII) in a good yield, which could be separated as N,O-diacetates and each structure was predicted by NMR spectrum of the methine proton attached to the carbon having acetoxy group ( $J_{2,3}=11$ ,  $J_{3,4}=4$  Hz).



for the former and  $J_{1,2}=8$ ,  $J_{2,3}=10$  Hz for the latter). This mixture was successively  $N$ -t-butyloxycarbonylated with t-butyl azidoformate and triethylamine in dioxane, hydrogenolyzed with platinum oxide in methanol and coupled with  $N$ -benzyloxycarbonyl-D-alanine by DCC method to give a mixture, from which benzyl 4-(D-alanylaminol)-2-(t-butyloxycarbonylamino)-2,4-dideoxy- $\beta$ -L-arabinopyranoside (IX) [mp 160-161°C; IR  $\text{cm}^{-1}$ : 3410, 3320, 3200(OH, NH), 1730, 1720, 1690(NHCO), 1650(NHCO), 1540, 1520, 1505(NH)] was separated in ca. 35 % yield (based on V) by tlc on silica gel [benzene-pyridine (9:1)].

Compound IX was treated with 98 % formic acid and hydrogenated with palladium-charcoal to afford prumycin dihydrochloride (I) in 80 % yield [mp 195-198°C (decomp.);  $[\alpha]_D^{23} +90^\circ$  (c 0.5,  $\text{CH}_3\text{OH}$ ); IR  $\text{cm}^{-1}$ : 3400-2800(OH, NH,  $\text{NH}_3^+$ ), 1680(NHCO), 1600, 1495(NH $_3^+$ ), 1560(NH); lit., mp ca. 195°C (decomp.);  $[\alpha]_D^{23} +115^\circ$  (c 0.5,  $\text{CH}_3\text{OH}$ ) (natural prumycin<sup>2)</sup>; mp 196-200°C (decomp.);  $[\alpha]_D^{17} +93^\circ$  (c 0.70,  $\text{CH}_3\text{OH}$ ) (synthesized prumycin<sup>3)</sup>]. The IR spectrum and chromatographic behavior of I were identical with those of natural prumycin.

#### References

- 1) T. Hata, S. Omura, M. Katagiri, K. Atsumi, J. Awaya, S. Higashikawa, K. Yasui, H. Terada, and S. Kuyama, J. Antibiotics, 24, 900 (1971); S. Omura, M. Katagiri, J. Awaya, K. Atsumi, R. Oiwa, T. Hata, S. Higashikawa, K. Yasui, H. Terada, and S. Kuyama, Agr. Biol. Chem., 37, 2805 (1973).
- 2) S. Omura, M. Katagiri, K. Atsumi, T. Hata, A. A. Jakubowski, I. B. Springs, and M. Tishler, J. Chem. Soc. (Perkin I), 1627 (1974).
- 3) H. Kuzuhara and S. Emoto, T. Letters, 1853 (1975).
- 4) A. J. Dick and J. K. N. Jones, Can. J. Chem., 43, 977 (1965); 44, 79 (1966).

(Received January 5, 1976)